claripy
— Solver Engine
Realistically, you should never have to work with in-depth claripy APIs unless you’re doing some hard-core analysis. Most of the time, you’ll be using claripy as a simple frontend to z3:
import claripy
a = claripy.BVS("sym_val", 32)
b = claripy.RotateLeft(a, 8)
c = b + 4
s = claripy.Solver()
s.add(c == 0x41424344)
assert s.eval(c, 1)[0] == 0x41424344
assert s.eval(a, 1)[0] == 0x40414243
Or using its components in angr:
import angr, claripy
b = angr.Project('/bin/true')
path = b.factory.path()
rax_start = claripy.BVS('rax_start', 64)
path.state.regs.rax = rax_start
path_new = path.step()[0]
rax_new = path_new.state.regs.rax
path_new.state.se.add(rax_new == 1337)
print(path_new.state.se.eval(rax_start, 1)[0])
AST
- class claripy.ast.base.ASTCacheKey(a)
Bases:
object
- class claripy.ast.base.Base(op, args, add_variables=None, hash=None, **kwargs)
Bases:
object
This is the base class of all claripy ASTs. An AST tracks a tree of operations on arguments.
This class should not be instanciated directly - instead, use one of the constructor functions (BVS, BVV, FPS, FPV…) to construct a leaf node and then build more complicated expressions using operations.
AST objects have hash identity. This means that an AST that has the same hash as another AST will be the same object. This is critical for efficient memory usage. As an example, the following is true:
a, b = two different ASTs c = b + a d = b + a assert c is d
- Variables
op – The operation that is being done on the arguments
args – The arguments that are being used
This is called when you create a new Base object, whether directly or through an operation. It finalizes the arguments (see the _finalize function, above) and then computes a hash. If an AST of this hash already exists, it returns that AST. Otherwise, it creates, initializes, and returns the AST.
- Parameters
op – The AST operation (‘__add__’, ‘Or’, etc)
args – The arguments to the AST operation (i.e., the objects to add)
variables – The symbolic variables present in the AST (default: empty set)
symbolic – A flag saying whether or not the AST is symbolic (default: False)
length – An integer specifying the length of this AST (default: None)
simplified – A measure of how simplified this AST is. 0 means unsimplified, 1 means fast-simplified (basically, just undoing the Reverse op), and 2 means simplified through z3.
errored – A set of backends that are known to be unable to handle this AST.
eager_backends – A list of backends with which to attempt eager evaluation
annotations – A frozenset of annotations applied onto this AST.
- FULL_SIMPLIFY = 1
- LITE_SIMPLIFY = 2
- UNSIMPLIFIED = 0
- LITE_REPR = 0
- MID_REPR = 1
- FULL_REPR = 2
- property cache_key
A key that refers to this AST - this value is appropriate for usage as a key in dictionaries.
- make_like(op, args, **kwargs)
- append_annotation(a)
Appends an annotation to this AST.
- Parameters
a – the annotation to append
- Returns
a new AST, with the annotation added
- append_annotations(new_tuple)
Appends several annotations to this AST.
- Parameters
new_tuple – the tuple of annotations to append
- Returns
a new AST, with the annotations added
- annotate(*args)
Appends annotations to this AST.
- Parameters
args – the tuple of annotations to append (variadic positional args)
- Returns
a new AST, with the annotations added
- insert_annotation(a)
Inserts an annotation to this AST.
- Parameters
a – the annotation to insert
- Returns
a new AST, with the annotation added
- insert_annotations(new_tuple)
Inserts several annotations to this AST.
- Parameters
new_tuple – the tuple of annotations to insert
- Returns
a new AST, with the annotations added
- replace_annotations(new_tuple)
Replaces annotations on this AST.
- Parameters
new_tuple – the tuple of annotations to replace the old annotations with
- Returns
a new AST, with the annotations added
- remove_annotation(a)
Removes an annotation from this AST.
- Parameters
a – the annotation to remove
- Returns
a new AST, with the annotation removed
- remove_annotations(remove_sequence)
Removes several annotations from this AST.
- Parameters
remove_sequence – a sequence/set of the annotations to remove
- Returns
a new AST, with the annotations removed
- dbg_repr(prefix=None)
Returns a debug representation of this AST.
- shallow_repr(max_depth=8, explicit_length=False, details=0, inner=False, parent_prec=15, left=True)
Returns a string representation of this AST, but with a maximum depth to prevent floods of text being printed.
- Parameters
max_depth – The maximum depth to print.
explicit_length – Print lengths of BVV arguments.
details – An integer value specifying how detailed the output should be: LITE_REPR - print short repr for both operations and BVs, MID_REPR - print full repr for operations and short for BVs, FULL_REPR - print full repr of both operations and BVs.
inner – whether or not it is an inner AST
parent_prec – parent operation precedence level
left – whether or not it is a left AST
- Returns
A string representing the AST
- children_asts()
Return an iterator over the nested children ASTs.
- leaf_asts()
Return an iterator over the leaf ASTs.
- property recursive_children_asts
Use children_asts() instead.
- Type
DEPRECATED
- property recursive_leaf_asts
Use leaf_asts() instead.
- Type
DEPRECATED
- dbg_is_looped()
- swap_args(new_args, new_length=None, **kwargs)
This returns the same AST, with the arguments swapped out for new_args.
- split(split_on)
Splits the AST if its operation is split_on (i.e., return all the arguments). Otherwise, return a list with just the AST.
- structurally_match(o)
Structurally compares two A objects, and check if their corresponding leaves are definitely the same A object (name-wise or hash-identity wise).
- Parameters
o – the other claripy A object
- Returns
True/False
- replace_dict(replacements, variable_set=None, leaf_operation=None)
Returns this AST with subexpressions replaced by those that can be found in replacements dict.
- Parameters
variable_set – For optimization, ast’s without these variables are not checked for replacing.
replacements – A dictionary of hashes to their replacements.
leaf_operation – An operation that should be applied to the leaf nodes.
- Returns
An AST with all instances of ast’s in replacements.
- replace(old, new, variable_set=None, leaf_operation=None)
Returns this AST but with the AST ‘old’ replaced with AST ‘new’ in its subexpressions.
- canonicalize(var_map=None, counter=None)
- property ite_burrowed
Returns an equivalent AST that “burrows” the ITE expressions as deep as possible into the ast, for simpler printing.
- property ite_excavated
Returns an equivalent AST that “excavates” the ITE expressions out as far as possible toward the root of the AST, for processing in static analyses.
- property singlevalued
- property multivalued
- property cardinality
- property concrete
- property uninitialized
Whether this AST comes from an uninitialized dereference or not. It’s only used in under-constrained symbolic execution mode.
- Returns
True/False/None (unspecified).
- property uc_alloc_depth
The depth of allocation by lazy-initialization. It’s only used in under-constrained symbolic execution mode.
- Returns
An integer indicating the allocation depth, or None if it’s not from lazy-initialization.
- op
- args
- variables
- symbolic
- length
- annotations
- simplifiable
- depth
- claripy.ast.base.simplify(e)
- class claripy.ast.bits.Bits(op, args, add_variables=None, hash=None, **kwargs)
Bases:
claripy.ast.base.Base
A base class for AST types that can be stored as a series of bits. Currently, this is bitvectors and IEEE floats.
- Variables
length – The length of this value in bits.
This is called when you create a new Base object, whether directly or through an operation. It finalizes the arguments (see the _finalize function, above) and then computes a hash. If an AST of this hash already exists, it returns that AST. Otherwise, it creates, initializes, and returns the AST.
- Parameters
op – The AST operation (‘__add__’, ‘Or’, etc)
args – The arguments to the AST operation (i.e., the objects to add)
variables – The symbolic variables present in the AST (default: empty set)
symbolic – A flag saying whether or not the AST is symbolic (default: False)
length – An integer specifying the length of this AST (default: None)
simplified – A measure of how simplified this AST is. 0 means unsimplified, 1 means fast-simplified (basically, just undoing the Reverse op), and 2 means simplified through z3.
errored – A set of backends that are known to be unable to handle this AST.
eager_backends – A list of backends with which to attempt eager evaluation
annotations – A frozenset of annotations applied onto this AST.
- length
- make_like(op, args, **kwargs)
- size()
- raw_to_bv()
Converts this data’s bit-pattern to a bitvector.
- raw_to_fp()
Converts this data’s bit-pattern to an IEEE float.
- claripy.ast.bool.cleanup()
- class claripy.ast.bool.Bool(op, args, add_variables=None, hash=None, **kwargs)
Bases:
claripy.ast.base.Base
This is called when you create a new Base object, whether directly or through an operation. It finalizes the arguments (see the _finalize function, above) and then computes a hash. If an AST of this hash already exists, it returns that AST. Otherwise, it creates, initializes, and returns the AST.
- Parameters
op – The AST operation (‘__add__’, ‘Or’, etc)
args – The arguments to the AST operation (i.e., the objects to add)
variables – The symbolic variables present in the AST (default: empty set)
symbolic – A flag saying whether or not the AST is symbolic (default: False)
length – An integer specifying the length of this AST (default: None)
simplified – A measure of how simplified this AST is. 0 means unsimplified, 1 means fast-simplified (basically, just undoing the Reverse op), and 2 means simplified through z3.
errored – A set of backends that are known to be unable to handle this AST.
eager_backends – A list of backends with which to attempt eager evaluation
annotations – A frozenset of annotations applied onto this AST.
- is_true()
Returns True if ‘self’ can be easily determined to be True. Otherwise, return False. Note that the AST might still be True (i.e., if it were simplified via Z3), but it’s hard to quickly tell that.
- is_false()
Returns True if ‘self’ can be easily determined to be False. Otherwise, return False. Note that the AST might still be False (i.e., if it were simplified via Z3), but it’s hard to quickly tell that.
- intersection()
- claripy.ast.bool.BoolS(name, explicit_name=None)
Creates a boolean symbol (i.e., a variable).
- Parameters
name – The name of the symbol
explicit_name – If False, an identifier is appended to the name to ensure uniqueness.
- Returns
A Bool object representing this symbol.
- claripy.ast.bool.BoolV(val)
- claripy.ast.bool.If(*args)
- claripy.ast.bool.is_true(e, exact=None)
- claripy.ast.bool.is_false(e, exact=None)
- claripy.ast.bool.ite_dict(i, d, default)
Return an expression of if-then-else trees which expresses a switch tree :param i: The variable which may take on multiple values affecting the final result :param d: A dict mapping possible values for i to values which the result could be :param default: A default value that the expression should take on if i matches none of the keys of d :return: An expression encoding the result of the above
- claripy.ast.bool.ite_cases(cases, default)
Return an expression of if-then-else trees which expresses a series of alternatives
- Parameters
cases – A list of tuples (c, v). c is the condition under which v should be the result of the expression
default – A default value that the expression should take on if none of the c conditions are satisfied
- Returns
An expression encoding the result of the above
- claripy.ast.bool.reverse_ite_cases(ast)
Given an expression created by ite_cases, produce the cases that generated it :param ast: :return:
- claripy.ast.bool.constraint_to_si(expr)
Convert a constraint to SI if possible.
- Parameters
expr –
- Returns
- claripy.ast.bv.cleanup()
- class claripy.ast.bv.BV(op, args, add_variables=None, hash=None, **kwargs)
Bases:
claripy.ast.bits.Bits
A class representing an AST of operations culminating in a bitvector. Do not instantiate this class directly, instead use BVS or BVV to construct a symbol or value, and then use operations to construct more complicated expressions.
Individual sub-bits and bit-ranges can be extracted from a bitvector using index and slice notation. Bits are indexed weirdly. For a 32-bit AST:
a[31] is the LEFT most bit, so it’d be the 0 in
01111111111111111111111111111111
a[0] is the RIGHT most bit, so it’d be the 0 in
11111111111111111111111111111110
a[31:30] are the two leftmost bits, so they’d be the 0s in:
00111111111111111111111111111111
a[1:0] are the two rightmost bits, so they’d be the 0s in:
11111111111111111111111111111100
This is called when you create a new Base object, whether directly or through an operation. It finalizes the arguments (see the _finalize function, above) and then computes a hash. If an AST of this hash already exists, it returns that AST. Otherwise, it creates, initializes, and returns the AST.
- Parameters
op – The AST operation (‘__add__’, ‘Or’, etc)
args – The arguments to the AST operation (i.e., the objects to add)
variables – The symbolic variables present in the AST (default: empty set)
symbolic – A flag saying whether or not the AST is symbolic (default: False)
length – An integer specifying the length of this AST (default: None)
simplified – A measure of how simplified this AST is. 0 means unsimplified, 1 means fast-simplified (basically, just undoing the Reverse op), and 2 means simplified through z3.
errored – A set of backends that are known to be unable to handle this AST.
eager_backends – A list of backends with which to attempt eager evaluation
annotations – A frozenset of annotations applied onto this AST.
- chop(bits=1)
Chops a BV into consecutive sub-slices. Obviously, the length of this BV must be a multiple of bits.
- Returns
A list of smaller bitvectors, each
bits
in length. The first one will be the left-most (i.e. most significant) bits.
- get_byte(index)
Extracts a byte from a BV, where the index refers to the byte in a big-endian order
- Parameters
index – the byte to extract
- Returns
An 8-bit BV
- get_bytes(index, size)
Extracts several bytes from a bitvector, where the index refers to the byte in a big-endian order
- Parameters
index – the byte index at which to start extracting
size – the number of bytes to extract
- Returns
A BV of size
size * 8
- zero_extend(n)
Zero-extends the bitvector by n bits. So:
a = BVV(0b1111, 4) b = a.zero_extend(4) b is BVV(0b00001111)
- sign_extend(n)
Sign-extends the bitvector by n bits. So:
a = BVV(0b1111, 4) b = a.sign_extend(4) b is BVV(0b11111111)
- concat(*args)
Concatenates this bitvector with the bitvectors provided. This bitvector will be on the far-left, i.e. the most significant bits.
- val_to_fp(sort, signed=True, rm=None)
Interpret this bitvector as an integer, and return the floating-point representation of that integer.
- Parameters
sort – The sort of floating point value to return
signed – Optional: whether this value is a signed integer
rm – Optional: the rounding mode to use
- Returns
An FP AST whose value is the same as this BV
- raw_to_fp()
Interpret the bits of this bitvector as an IEEE754 floating point number. The inverse of this function is raw_to_bv.
- Returns
An FP AST whose bit-pattern is the same as this BV
- raw_to_bv()
A counterpart to FP.raw_to_bv - does nothing and returns itself.
- to_bv()
- static Concat(*args)
- static Extract(*args)
- LShR()
- SDiv()
- SGE()
- SGT()
- SLE()
- SLT()
- SMod()
- UGE()
- UGT()
- ULE()
- ULT()
- intersection()
- property reversed
- union()
- widen()
- claripy.ast.bv.BVS(name, size, min=None, max=None, stride=None, uninitialized=False, explicit_name=None, discrete_set=False, discrete_set_max_card=None, **kwargs)
Creates a bit-vector symbol (i.e., a variable).
If you want to specify the maximum or minimum value of a normal symbol that is not part of value-set analysis, you should manually add constraints to that effect. Do not use ``min`` and ``max`` for symbolic execution.
- Parameters
name – The name of the symbol.
size – The size (in bits) of the bit-vector.
min – The minimum value of the symbol, used only for value-set analysis
max – The maximum value of the symbol, used only for value-set analysis
stride – The stride of the symbol, used only for value-set analysis
uninitialized – Whether this value should be counted as an “uninitialized” value in the course of an analysis.
explicit_name (bool) – If False, an identifier is appended to the name to ensure uniqueness.
discrete_set (bool) – If True, a DiscreteStridedIntervalSet will be used instead of a normal StridedInterval.
discrete_set_max_card (int) – The maximum cardinality of the discrete set. It is ignored if discrete_set is set to False or None.
- Returns
a BV object representing this symbol.
- claripy.ast.bv.BVV(value, size=None, **kwargs)
Creates a bit-vector value (i.e., a concrete value).
- Parameters
value – The value. Either an integer or a bytestring. If it’s the latter, it will be interpreted as the bytes of a big-endian constant.
size – The size (in bits) of the bit-vector. Optional if you provide a string, required for an integer.
- Returns
A BV object representing this value.
- claripy.ast.bv.SI(name=None, bits=0, lower_bound=None, upper_bound=None, stride=None, to_conv=None, explicit_name=None, discrete_set=False, discrete_set_max_card=None)
- claripy.ast.bv.TSI(bits, name=None, uninitialized=False, explicit_name=None)
- claripy.ast.bv.ESI(bits, **kwargs)
- claripy.ast.bv.ValueSet(bits, region=None, region_base_addr=None, value=None, name=None, val=None)
- claripy.ast.bv.VS(bits, region=None, region_base_addr=None, value=None, name=None, val=None)
- claripy.ast.bv.DSIS(name=None, bits=0, lower_bound=None, upper_bound=None, stride=None, explicit_name=None, to_conv=None, max_card=None)
- class claripy.ast.fp.FP(op, args, add_variables=None, hash=None, **kwargs)
Bases:
claripy.ast.bits.Bits
An AST representing a set of operations culminating in an IEEE754 floating point number.
Do not instantiate this class directly, instead use FPV or FPS to construct a value or symbol, and then use operations to construct more complicated expressions.
- Variables
length – The length of this value
sort – The sort of this value, usually either FSORT_FLOAT or FSORT_DOUBLE
This is called when you create a new Base object, whether directly or through an operation. It finalizes the arguments (see the _finalize function, above) and then computes a hash. If an AST of this hash already exists, it returns that AST. Otherwise, it creates, initializes, and returns the AST.
- Parameters
op – The AST operation (‘__add__’, ‘Or’, etc)
args – The arguments to the AST operation (i.e., the objects to add)
variables – The symbolic variables present in the AST (default: empty set)
symbolic – A flag saying whether or not the AST is symbolic (default: False)
length – An integer specifying the length of this AST (default: None)
simplified – A measure of how simplified this AST is. 0 means unsimplified, 1 means fast-simplified (basically, just undoing the Reverse op), and 2 means simplified through z3.
errored – A set of backends that are known to be unable to handle this AST.
eager_backends – A list of backends with which to attempt eager evaluation
annotations – A frozenset of annotations applied onto this AST.
- to_fp(sort, rm=None)
Convert this float to a different sort
- Parameters
sort – The sort to convert to
rm – Optional: The rounding mode to use
- Returns
An FP AST
- raw_to_fp()
A counterpart to BV.raw_to_fp - does nothing and returns itself.
- raw_to_bv()
Interpret the bit-pattern of this IEEE754 floating point number as a bitvector. The inverse of this function is to_bv.
- Returns
A BV AST whose bit-pattern is the same as this FP
- to_bv()
- val_to_bv(size, signed=True, rm=None)
Convert this floating point value to an integer.
- Parameters
size – The size of the bitvector to return
signed – Optional: Whether the target integer is signed
rm – Optional: The rounding mode to use
- Returns
A bitvector whose value is the rounded version of this FP’s value
- property sort
- isInf()
- isNaN()
- claripy.ast.fp.FPS(name, sort, explicit_name=None)
Creates a floating-point symbol.
- Parameters
name – The name of the symbol
sort – The sort of the floating point
explicit_name – If False, an identifier is appended to the name to ensure uniqueness.
- Returns
An FP AST.
- claripy.ast.fp.FPV(value, sort)
Creates a concrete floating-point value.
- Parameters
value – The value of the floating point.
sort – The sort of the floating point.
- Returns
An FP AST.
- class claripy.ast.int.Int(op, args, add_variables=None, hash=None, **kwargs)
Bases:
claripy.ast.base.Base
This is called when you create a new Base object, whether directly or through an operation. It finalizes the arguments (see the _finalize function, above) and then computes a hash. If an AST of this hash already exists, it returns that AST. Otherwise, it creates, initializes, and returns the AST.
- Parameters
op – The AST operation (‘__add__’, ‘Or’, etc)
args – The arguments to the AST operation (i.e., the objects to add)
variables – The symbolic variables present in the AST (default: empty set)
symbolic – A flag saying whether or not the AST is symbolic (default: False)
length – An integer specifying the length of this AST (default: None)
simplified – A measure of how simplified this AST is. 0 means unsimplified, 1 means fast-simplified (basically, just undoing the Reverse op), and 2 means simplified through z3.
errored – A set of backends that are known to be unable to handle this AST.
eager_backends – A list of backends with which to attempt eager evaluation
annotations – A frozenset of annotations applied onto this AST.
- class claripy.ast.strings.String(op, args, add_variables=None, hash=None, **kwargs)
Bases:
claripy.ast.bits.Bits
Base class that represent the AST of a String object and implements all the operation useful to create and modify the AST.
Do not instantiate this class directly, instead use StringS or StringV to construct a symbol or value, and then use operations to construct more complicated expressions.
This is called when you create a new Base object, whether directly or through an operation. It finalizes the arguments (see the _finalize function, above) and then computes a hash. If an AST of this hash already exists, it returns that AST. Otherwise, it creates, initializes, and returns the AST.
- Parameters
op – The AST operation (‘__add__’, ‘Or’, etc)
args – The arguments to the AST operation (i.e., the objects to add)
variables – The symbolic variables present in the AST (default: empty set)
symbolic – A flag saying whether or not the AST is symbolic (default: False)
length – An integer specifying the length of this AST (default: None)
simplified – A measure of how simplified this AST is. 0 means unsimplified, 1 means fast-simplified (basically, just undoing the Reverse op), and 2 means simplified through z3.
errored – A set of backends that are known to be unable to handle this AST.
eager_backends – A list of backends with which to attempt eager evaluation
annotations – A frozenset of annotations applied onto this AST.
- STRING_TYPE_IDENTIFIER = 'STRING_'
- GENERATED_BVS_IDENTIFIER = 'BVS_'
- MAX_LENGTH = 10000
- string_length
- strReplace(str_to_replace, replacement)
Replace the first occurence of str_to_replace with replacement
- Parameters
str_to_replace (claripy.ast.String) – pattern that has to be replaced
replacement (claripy.ast.String) – replacement pattern
- toInt(bitlength)
Convert the string to a bitvector holding the integer representation of the string
- Parameters
bitlength – size of the biitvector holding the result
- indexOf(pattern, start_idx, bitlength)
Return the start index of the pattern inside the input string in a Bitvector representation, otherwise it returns -1 (always using a BitVector)
- Parameters
bitlength – size of the biitvector holding the result
- raw_to_bv()
A counterpart to FP.raw_to_bv - does nothing and returns itself.
- raw_to_fp()
- static IntToStr(*args)
- static StrConcat(*args)
- static StrContains(*args)
- static StrIndexOf(*args)
- static StrIsDigit(*args)
- static StrLen(*args)
- static StrPrefixOf(*args)
- static StrReplace(*args)
- static StrSubstr(*args)
- static StrSuffixOf(*args)
- static StrToInt(*args)
- claripy.ast.strings.StringS(name, size, uninitialized=False, explicit_name=False, **kwargs)
Create a new symbolic string (analogous to z3.String())
- Parameters
name – The name of the symbolic string (i. e. the name of the variable)
size – The size in bytes of the string (i. e. the length of the string)
uninitialized – Whether this value should be counted as an “uninitialized” value in the course of an analysis.
explicit_name (bool) – If False, an identifier is appended to the name to ensure uniqueness.
- Returns
The String object representing the symbolic string
- claripy.ast.strings.StringV(value, length=None, **kwargs)
Create a new Concrete string (analogous to z3.StringVal())
- Parameters
value – The constant value of the concrete string
- Returns
The String object representing the concrete string
- class claripy.ast.vs.VS(op, args, add_variables=None, hash=None, **kwargs)
Bases:
claripy.ast.bits.Bits
This is called when you create a new Base object, whether directly or through an operation. It finalizes the arguments (see the _finalize function, above) and then computes a hash. If an AST of this hash already exists, it returns that AST. Otherwise, it creates, initializes, and returns the AST.
- Parameters
op – The AST operation (‘__add__’, ‘Or’, etc)
args – The arguments to the AST operation (i.e., the objects to add)
variables – The symbolic variables present in the AST (default: empty set)
symbolic – A flag saying whether or not the AST is symbolic (default: False)
length – An integer specifying the length of this AST (default: None)
simplified – A measure of how simplified this AST is. 0 means unsimplified, 1 means fast-simplified (basically, just undoing the Reverse op), and 2 means simplified through z3.
errored – A set of backends that are known to be unable to handle this AST.
eager_backends – A list of backends with which to attempt eager evaluation
annotations – A frozenset of annotations applied onto this AST.
Backends
- class claripy.backends.Backend(solver_required=None)
Bases:
object
Backends are Claripy’s workhorses. Claripy exposes ASTs (claripy.ast.Base objects) to the world, but when actual computation has to be done, it pushes those ASTs into objects that can be handled by the backends themselves. This provides a unified interface to the outside world while allowing Claripy to support different types of computation. For example, BackendConcrete provides computation support for concrete bitvectors and booleans, BackendVSA introduces VSA constructs such as StridedIntervals (and details what happens when operations are performed on them), and BackendZ3 provides support for symbolic variables and constraint solving.
There are a set of functions that a backend is expected to implement. For all of these functions, the “public” version is expected to be able to deal with claripy.ast.Base objects, while the “private” version should only deal with objects specific to the backend itself. This is distinguished with Python idioms: a public function will be named func() while a private function will be _func(). All functions should return objects that are usable by the backend in its private methods. If this can’t be done (i.e., some functionality is being attempted that the backend can’t handle), the backend should raise a BackendError. In this case, Claripy will move on to the next backend in its list.
All backends must implement a convert() function. This function receives a claripy.ast.Base and should return an object that the backend can handle in its private methods. Backends should also implement a _convert() method, which will receive anything that is not a claripy.ast.Base object (i.e., an integer or an object from a different backend). If convert() or _convert() receives something that the backend can’t translate to a format that is usable internally, the backend should raise BackendError, and thus won’t be used for that object.
Claripy contract with its backends is as follows: backends should be able to can handle, in their private functions, any object that they return from their private or public functions. Likewise, Claripy will never pass an object to any backend private function that did not originate as a return value from a private or public function of that backend. One exception to this is _convert(), as Claripy can try to stuff anything it feels like into _convert() to see if the backend can handle that type of object.
- property is_smt_backend
- downsize()
Clears all caches associated with this backend.
- handles(expr)
Checks whether this backend can handle the expression.
- Parameters
expr – The expression.
- Returns
True if the backend can handle this expression, False if not.
- convert(expr)
Resolves a claripy.ast.Base into something usable by the backend.
- Parameters
expr – The expression.
save – Save the result in the expression’s object cache
- Returns
A backend object.
- convert_list(args)
- call(op, args)
Calls operation op on args args with this backend.
- Returns
A backend object representing the result.
- simplify(e)
- is_true(e, extra_constraints=(), solver=None, model_callback=None)
Should return True if e can be easily found to be True.
- Parameters
e – The AST.
extra_constraints – Extra constraints (as ASTs) to add to the solver for this solve.
solver – A solver, for backends that require it.
model_callback – a function that will be executed with recovered models (if any)
- Returns
A boolean.
- is_false(e, extra_constraints=(), solver=None, model_callback=None)
Should return True if e can be easily found to be False.
- Parameters
e – The AST
extra_constraints – Extra constraints (as ASTs) to add to the solver for this solve.
solver – A solver, for backends that require it
model_callback – a function that will be executed with recovered models (if any)
- Returns
A boolean.
- has_true(e, extra_constraints=(), solver=None, model_callback=None)
Should return True if e can possible be True.
- Parameters
e – The AST.
extra_constraints – Extra constraints (as ASTs) to add to the solver for this solve.
solver – A solver, for backends that require it.
model_callback – a function that will be executed with recovered models (if any)
- Returns
A boolean
- has_false(e, extra_constraints=(), solver=None, model_callback=None)
Should return False if e can possibly be False.
- Parameters
e – The AST.
extra_constraints – Extra constraints (as ASTs) to add to the solver for this solve.
solver – A solver, for backends that require it.
model_callback – a function that will be executed with recovered models (if any)
- Returns
A boolean.
- solver(timeout=None)
This function should return an instance of whatever object handles solving for this backend. For example, in Z3, this would be z3.Solver().
- add(s, c, track=False)
This function adds constraints to the backend solver.
- Parameters
c – A sequence of ASTs
s – A backend solver object
track (bool) – True to enable constraint tracking, which is used in unsat_core()
- unsat_core(s)
This function returns the unsat core from the backend solver.
- Parameters
s – A backend solver object.
- Returns
The unsat core.
- eval(expr, n, extra_constraints=(), solver=None, model_callback=None)
This function returns up to n possible solutions for expression expr.
- Parameters
expr – expression (an AST) to evaluate
n – number of results to return
solver – a solver object, native to the backend, to assist in the evaluation (for example, a z3.Solver)
extra_constraints – extra constraints (as ASTs) to add to the solver for this solve
model_callback – a function that will be executed with recovered models (if any)
- Returns
A sequence of up to n results (backend objects)
- batch_eval(exprs, n, extra_constraints=(), solver=None, model_callback=None)
Evaluate one or multiple expressions.
- Parameters
exprs – A list of expressions to evaluate.
n – Number of different solutions to return.
extra_constraints – Extra constraints (as ASTs) to add to the solver for this solve.
solver – A solver object, native to the backend, to assist in the evaluation.
model_callback – a function that will be executed with recovered models (if any)
- Returns
A list of up to n tuples, where each tuple is a solution for all expressions.
- min(expr, extra_constraints=(), signed=False, solver=None, model_callback=None)
Return the minimum value of expr.
- Parameters
expr – expression (an AST) to evaluate
solver – a solver object, native to the backend, to assist in the evaluation (for example, a z3.Solver)
extra_constraints – extra constraints (as ASTs) to add to the solver for this solve
signed – Whether to solve for the minimum signed integer instead of the unsigned min
model_callback – a function that will be executed with recovered models (if any)
- Returns
the minimum possible value of expr (backend object)
- max(expr, extra_constraints=(), signed=False, solver=None, model_callback=None)
Return the maximum value of expr.
- Parameters
expr – expression (an AST) to evaluate
solver – a solver object, native to the backend, to assist in the evaluation (for example, a z3.Solver)
extra_constraints – extra constraints (as ASTs) to add to the solver for this solve
signed – Whether to solve for the maximum signed integer instead of the unsigned max
model_callback – a function that will be executed with recovered models (if any)
- Returns
the maximum possible value of expr (backend object)
- check_satisfiability(extra_constraints=(), solver=None, model_callback=None)
This function does a constraint check and returns the solvers state
- Parameters
solver – The backend solver object.
extra_constraints – Extra constraints (as ASTs) to add to s for this solve
model_callback – a function that will be executed with recovered models (if any)
- Returns
‘SAT’, ‘UNSAT’, or ‘UNKNOWN’
- satisfiable(extra_constraints=(), solver=None, model_callback=None)
This function does a constraint check and checks if the solver is in a sat state.
- Parameters
solver – The backend solver object.
extra_constraints – Extra constraints (as ASTs) to add to s for this solve
model_callback – a function that will be executed with recovered models (if any)
- Returns
True if sat, otherwise false
- solution(expr, v, extra_constraints=(), solver=None, model_callback=None)
Return True if v is a solution of expr with the extra constraints, False otherwise.
- Parameters
expr – An expression (an AST) to evaluate
v – The proposed solution (an AST)
solver – A solver object, native to the backend, to assist in the evaluation (for example, a z3.Solver).
extra_constraints – Extra constraints (as ASTs) to add to the solver for this solve.
model_callback – a function that will be executed with recovered models (if any)
- Returns
True if v is a solution of expr, False otherwise
- name(a)
This should return the name of an expression.
- Parameters
a – the AST to evaluate
- identical(a, b)
This should return whether a is identical to b. Of course, this isn’t always clear. True should mean that it is definitely identical. False eans that, conservatively, it might not be.
- Parameters
a – an AST
b – another AST
- cardinality(a)
This should return the maximum number of values that an expression can take on. This should be a strict over approximation.
- Parameters
a – The AST to evaluate
- Returns
An integer
- singlevalued(a)
- multivalued(a)
- apply_annotation(o, a)
This should apply the annotation on the backend object, and return a new backend object.
- Parameters
o – A backend object.
a – An Annotation object.
- Returns
A backend object.
- default_op(expr)
- class claripy.backend_object.BackendObject
Bases:
object
This is a base class for custom backend objects to implement.
It lets Claripy know that how to deal with those objects, in case they’re directly used in operations.
Backend objects that don’t derive from this class need to be wrapped in a type-I claripy.ast.Base.
- to_claripy()
Claripy calls this to retrieve something that it can directly reason about.
- class claripy.backends.backend_concrete.BackendConcrete
Bases:
claripy.backends.Backend
- static BVV(value, size)
- static StringV(value, size)
- static FPV(op, sort)
- convert(expr)
Override Backend.convert() to add fast paths for BVVs and BoolVs.
- is_true(e, extra_constraints=(), solver=None, model_callback=None)
- is_false(e, extra_constraints=(), solver=None, model_callback=None)
- claripy.backends.backend_z3.z3_expr_to_smt2(f, status='unknown', name='benchmark', logic='')
- claripy.backends.backend_z3.claripy_solver_to_smt2(s)
- claripy.backends.backend_z3.condom(f)
- class claripy.backends.backend_z3.SmartLRUCache(maxsize, getsizeof=None, evict=None)
Bases:
cachetools.LRUCache
- popitem()
- class claripy.backends.backend_z3.BackendZ3(reuse_z3_solver=None, ast_cache_size=10000)
Bases:
claripy.backends.Backend
- property extra_bvs_data
- downsize()
- BVS(**kwargs)
The Z3 condom intercepts Z3Exceptions and throws a ClaripyZ3Error instead.
- BVV(**kwargs)
The Z3 condom intercepts Z3Exceptions and throws a ClaripyZ3Error instead.
- FPS(**kwargs)
The Z3 condom intercepts Z3Exceptions and throws a ClaripyZ3Error instead.
- FPV(**kwargs)
The Z3 condom intercepts Z3Exceptions and throws a ClaripyZ3Error instead.
- BoolS(**kwargs)
The Z3 condom intercepts Z3Exceptions and throws a ClaripyZ3Error instead.
- BoolV(**kwargs)
The Z3 condom intercepts Z3Exceptions and throws a ClaripyZ3Error instead.
- StringV(**kwargs)
The Z3 condom intercepts Z3Exceptions and throws a ClaripyZ3Error instead.
- StringS(**kwargs)
The Z3 condom intercepts Z3Exceptions and throws a ClaripyZ3Error instead.
- call(*args, **kwargs)
- solver(timeout=None)
- add(s, c, track=False)
- simplify(**kwargs)
The Z3 condom intercepts Z3Exceptions and throws a ClaripyZ3Error instead.
- class claripy.backends.backend_z3_parallel.BackendZ3Parallel
Bases:
claripy.backends.backend_z3.BackendZ3
- abstract(*args, **kwargs)
- solver(*args, **kwargs)
- call(*args, **kwargs)
- resolve(*args, **kwargs)
- simplify(*args, **kwargs)
- claripy.backends.backend_vsa.arg_filter(f)
- claripy.backends.backend_vsa.normalize_arg_order(f)
- claripy.backends.backend_vsa.convert_args(f)
- class claripy.backends.backend_vsa.BackendVSA
Bases:
claripy.backends.Backend
- convert(expr)
- simplify(e)
- name(a)
- apply_annotation(bo, annotation)
Apply an annotation on the backend object.
- Parameters
bo (BackendObject) – The backend object.
annotation (Annotation) – The annotation to be applied
- Returns
A new BackendObject
- Return type
- BVV(ast)
- static BoolV(ast)
- static And(a, *args)
- static Not(a)
- static ULT(a, b)
- static ULE(a, b)
- static UGT(a, b)
- static UGE(a, b)
- static SLT(a, b)
- static SLE(a, b)
- static SGT(a, b)
- static SGE(a, b)
- static BVS(ast)
- If(cond, t, f)
- static Or(*args)
- static LShR(expr, shift_amount)
- static Concat(*args)
- static Extract(*args)
- static SignExt(*args)
- static ZeroExt(*args)
- static Reverse(arg)
- union(ast)
- intersection(ast)
- widen(ast)
- static CreateTopStridedInterval(bits, name=None, uninitialized=False)
- constraint_to_si(expr)
- static CreateStridedInterval(name=None, bits=0, stride=None, lower_bound=None, upper_bound=None, uninitialized=False, to_conv=None, discrete_set=False, discrete_set_max_cardinality=None)
- Parameters
name –
bits –
stride –
lower_bound –
upper_bound –
to_conv –
discrete_set (bool) –
discrete_set_max_cardinality (int) –
- Returns
- claripy.backends.backend_smtlib_solvers.z3str_popen.get_version()
- class claripy.backends.backend_smtlib_solvers.z3str_popen.Z3StrProxy(timeout=None)
Bases:
claripy.backends.backend_smtlib_solvers.PopenSolverProxy
- create_process()
- class claripy.backends.backend_smtlib_solvers.z3str_popen.SolverBackendZ3Str(*args, **kwargs)
Bases:
claripy.backends.backend_smtlib_solvers.SMTLibSolverBackend
- solver(timeout=None)
This function should return an instance of whatever object handles solving for this backend. For example, in Z3, this would be z3.Solver().
- claripy.backends.backend_smtlib_solvers.cvc4_popen.get_version()
- class claripy.backends.backend_smtlib_solvers.cvc4_popen.CVC4Proxy(timeout=None)
Bases:
claripy.backends.backend_smtlib_solvers.PopenSolverProxy
- create_process()
- class claripy.backends.backend_smtlib_solvers.cvc4_popen.SolverBackendCVC4(*args, **kwargs)
Bases:
claripy.backends.backend_smtlib_solvers.SMTLibSolverBackend
- solver(timeout=None)
This function should return an instance of whatever object handles solving for this backend. For example, in Z3, this would be z3.Solver().
- claripy.backends.backend_smtlib_solvers.z3_popen.get_version()
- class claripy.backends.backend_smtlib_solvers.z3_popen.Z3Proxy(timeout=None)
Bases:
claripy.backends.backend_smtlib_solvers.PopenSolverProxy
- create_process()
- class claripy.backends.backend_smtlib_solvers.z3_popen.SolverBackendZ3(*args, **kwargs)
Bases:
claripy.backends.backend_smtlib_solvers.SMTLibSolverBackend
- solver(timeout=None)
This function should return an instance of whatever object handles solving for this backend. For example, in Z3, this would be z3.Solver().
- claripy.backends.backend_smtlib_solvers.abc_popen.get_version()
- class claripy.backends.backend_smtlib_solvers.abc_popen.ABCProxy
Bases:
claripy.backends.backend_smtlib_solvers.PopenSolverProxy
- create_process()
- class claripy.backends.backend_smtlib_solvers.abc_popen.SolverBackendABC(*args, **kwargs)
Bases:
claripy.backends.backend_smtlib_solvers.SMTLibSolverBackend
- solver(timeout=None)
This function should return an instance of whatever object handles solving for this backend. For example, in Z3, this would be z3.Solver().
- class claripy.backends.backend_smtlib_solvers.AbstractSMTLibSolverProxy
Bases:
object
- write(smt)
- read(n)
- setup()
- reset()
- readuntil(s)
- readline()
- writeline(l)
- read_sat()
- read_model()
- create_process()
- class claripy.backends.backend_smtlib_solvers.PopenSolverProxy(p)
Bases:
claripy.backends.backend_smtlib_solvers.AbstractSMTLibSolverProxy
- read(n)
- write(smt)
- add_constraints(csts, track=False)
- terminate()
- class claripy.backends.backend_smtlib_solvers.SMTLibSolverBackend(*args, **kwargs)
Bases:
claripy.backends.backend_smtlib.BackendSMTLibBase
- solver(timeout=None)
This function should return an instance of whatever object handles solving for this backend. For example, in Z3, this would be z3.Solver().
- eval(expr, n, extra_constraints=(), solver=None, model_callback=None)
This function returns up to n possible solutions for expression expr.
- Parameters
expr – expression (an AST) to evaluate
n – number of results to return
solver – a solver object, native to the backend, to assist in the evaluation (for example, a z3.Solver)
extra_constraints – extra constraints (as ASTs) to add to the solver for this solve
model_callback – a function that will be executed with recovered models (if any)
- Returns
A sequence of up to n results (backend objects)
Frontends
- class claripy.frontend.Frontend
Bases:
object
- branch()
- blank_copy()
- eval_to_ast(e, n, extra_constraints=(), exact=None)
Evaluates expression e, returning a list of n concrete ASTs.
- Parameters
e – the expression
n – the number of ASTs to return
extra_constraints – extra constraints to consider when performing the evaluation
exact – whether or not to perform an exact evaluation. Ignored by non-approximating backends.
- Returns
list of concrete ASTs
- finalize()
- merge(others, merge_conditions, common_ancestor=None)
- combine(others)
- split()
- add(constraints)
Adds constraint(s) to constraints list.
- Parameters
constraints – constraint(s) to add
- Returns
- simplify()
Simplifies the stored constraints conjunction.
- check_satisfiability(extra_constraints=(), exact=None)
Checks the satisfiability of stored constraints conjunction.
- Parameters
extra_constraints – extra constraints to consider when checking satisfiability
exact – whether or not to perform exact checking. Ignored by non-approximating backends.
- Returns
‘SAT’ if the conjunction is satisfiable otherwise ‘UNSAT’
- satisfiable(extra_constraints=(), exact=None)
Checks if stored constraints conjunction is satisfiable.
- Parameters
extra_constraints – extra constraints to consider when checking satisfiability
exact – whether or not to perform exact checking. Ignored by non-approximating backends.
- Returns
True if the conjunction is satisfiable otherwise False
- eval(e, n, extra_constraints=(), exact=None)
Evaluates expression e, returning a tuple of n solutions.
- Parameters
e – the expression
n – the number of solutions to return
extra_constraints – extra constraints to consider when performing the evaluation
exact – whether or not to perform an exact evaluation. Ignored by non-approximating backends.
- Returns
tuple of python primitives representing results
- batch_eval(exprs, n, extra_constraints=(), exact=None)
Evaluates exprs, returning a list of tuples (one tuple of n solutions for expression).
- Parameters
exprs – expressions
n – the number of solutions to return
extra_constraints – extra constraints to consider when performing the evaluation
exact – whether or not to perform an exact evaluation. Ignored by non-approximating backends.
- Returns
list of tuples of python primitives representing results
- max(e, extra_constraints=(), signed=False, exact=None)
Evaluates e, returning its max possible value.
- Parameters
e – the expression
extra_constraints – extra constraints to consider when performing the evaluation
signed – whether the value should be treated as a signed integer
exact – whether or not to perform an exact evaluation. Ignored by non-approximating backends.
- Returns
max possible value
- min(e, extra_constraints=(), signed=False, exact=None)
Evaluates e, returning its min possible value.
- Parameters
e – the expression
extra_constraints – extra constraints to consider when performing the evaluation
signed – whether the value should be treated as a signed integer
exact – whether or not to perform an exact evaluation. Ignored by non-approximating backends.
- Returns
min possible value
- solution(e, v, extra_constraints=(), exact=None)
Checks if v is a possible solution to e.
- Parameters
e – the expression
v – the value
extra_constraints – extra constraints to consider when performing the evaluation
exact – whether or not to perform an exact evaluation. Ignored by non-approximating backends.
- Returns
True if it is a possible solution otherwise False
- is_true(e, extra_constraints=(), exact=None)
Checks if e can only (and TRIVIALLY) evaluate to True. If this function returns True, then the expression cannot ever be False, regardless of constraints or anything else. If the expression returns False, then the expression might STILL not ever be False; it’s just that we can’t trivially prove it. In other words, a return value of False gives you no information whatsoever.
- Parameters
e – the expression
extra_constraints – extra constraints to consider when performing the evaluation
exact – whether or not to perform an exact evaluation. Ignored by non-approximating backends.
- Returns
True if it can only evaluate to True otherwise False
- is_false(e, extra_constraints=(), exact=None)
Checks if e can only (and TRIVIALLY) evaluate to False. If this function returns True, then the expression cannot ever be True, regardless of constraints or anything else. If the expression returns False, then the expression might STILL not ever be True; it’s just that we can’t trivially prove it. In other words, a return value of False gives you no information whatsoever.
- Parameters
e – the expression
extra_constraints – extra constraints to consider when performing the evaluation
exact – whether or not to perform an exact evaluation. Ignored by non-approximating backends.
- Returns
True if it can only evaluate to False otherwise False
- downsize()
- class claripy.frontends.composite_frontend.CompositeFrontend(template_frontend, template_frontend_string, track=False, **kwargs)
Bases:
claripy.frontends.constrained_frontend.ConstrainedFrontend
- downsize()
- property variables
- add(constraints, **kwargs)
- check_satisfiability(extra_constraints=(), exact=None)
- satisfiable(extra_constraints=(), exact=None)
- eval(e, n, extra_constraints=(), exact=None)
- batch_eval(exprs, n, extra_constraints=(), exact=None)
- max(e, extra_constraints=(), signed=False, exact=None)
- min(e, extra_constraints=(), signed=False, exact=None)
- solution(e, v, extra_constraints=(), exact=None)
- is_true(e, extra_constraints=(), exact=None)
- is_false(e, extra_constraints=(), exact=None)
- unsat_core(extra_constraints=())
- simplify()
- finalize()
- property timeout
- merge(others, merge_conditions, common_ancestor=None)
- combine(others)
- split()
- class claripy.frontends.constrained_frontend.ConstrainedFrontend
Bases:
claripy.frontend.Frontend
- independent_constraints()
- downsize()
- finalize()
- merge(others, merge_conditions, common_ancestor=None)
- combine(others)
- split()
- add(constraints)
- simplify()
- check_satisfiability(extra_constraints=(), exact=None)
- satisfiable(extra_constraints=(), exact=None)
- batch_eval(exprs, n, extra_constraints=(), exact=None)
- eval(e, n, extra_constraints=(), exact=None)
- min(e, extra_constraints=(), signed=False, exact=None)
- max(e, extra_constraints=(), signed=False, exact=None)
- solution(e, v, extra_constraints=(), exact=None)
- is_true(e, extra_constraints=(), exact=None)
- is_false(e, extra_constraints=(), exact=None)
- class claripy.frontends.full_frontend.FullFrontend(solver_backend, timeout=None, track=False, **kwargs)
Bases:
claripy.frontends.constrained_frontend.ConstrainedFrontend
- add(constraints)
- simplify()
- check_satisfiability(extra_constraints=(), exact=None)
- satisfiable(extra_constraints=(), exact=None)
- eval(e, n, extra_constraints=(), exact=None)
- batch_eval(exprs, n, extra_constraints=(), exact=None)
- max(e, extra_constraints=(), signed=False, exact=None)
- min(e, extra_constraints=(), signed=False, exact=None)
- solution(e, v, extra_constraints=(), exact=None)
- is_true(e, extra_constraints=(), exact=None)
- is_false(e, extra_constraints=(), exact=None)
- unsat_core(extra_constraints=())
- downsize()
- merge(others, merge_conditions, common_ancestor=None)
- class claripy.frontends.hybrid_frontend.HybridFrontend(exact_frontend, approximate_frontend, approximate_first=False, **kwargs)
Bases:
claripy.frontend.Frontend
- property constraints
- property variables
- satisfiable(extra_constraints=(), exact=None)
- eval_to_ast(e, n, extra_constraints=(), exact=None)
- eval(e, n, extra_constraints=(), exact=None)
- batch_eval(e, n, extra_constraints=(), exact=None)
- max(e, extra_constraints=(), signed=False, exact=None)
- min(e, extra_constraints=(), signed=False, exact=None)
- solution(e, v, extra_constraints=(), exact=None)
- is_true(e, extra_constraints=(), exact=None)
- is_false(e, extra_constraints=(), exact=None)
- unsat_core(extra_constraints=())
- add(constraints)
- combine(others)
- merge(others, merge_conditions, common_ancestor=None)
- simplify()
- downsize()
- finalize()
- split()
- class claripy.frontends.light_frontend.LightFrontend(solver_backend, **kwargs)
Bases:
claripy.frontends.constrained_frontend.ConstrainedFrontend
- eval(e, n, extra_constraints=(), exact=None)
- batch_eval(exprs, n, extra_constraints=(), exact=None)
- max(e, extra_constraints=(), signed=False, exact=None)
- min(e, extra_constraints=(), signed=False, exact=None)
- solution(e, v, extra_constraints=(), exact=None)
- is_true(e, extra_constraints=(), exact=None)
- is_false(e, extra_constraints=(), exact=None)
- satisfiable(extra_constraints=(), exact=None)
- merge(others, merge_conditions, common_ancestor=None)
- class claripy.frontends.replacement_frontend.ReplacementFrontend(actual_frontend, allow_symbolic=None, replacements=None, replacement_cache=None, unsafe_replacement=None, complex_auto_replace=None, auto_replace=None, replace_constraints=None, **kwargs)
Bases:
claripy.frontends.constrained_frontend.ConstrainedFrontend
- add_replacement(old, new, invalidate_cache=True, replace=True, promote=True)
- remove_replacements(old_entries)
- clear_replacements()
- downsize()
- eval(e, n, extra_constraints=(), exact=None)
- batch_eval(exprs, n, extra_constraints=(), exact=None)
- max(e, extra_constraints=(), signed=False, exact=None)
- min(e, extra_constraints=(), signed=False, exact=None)
- solution(e, v, extra_constraints=(), exact=None)
- is_true(e, extra_constraints=(), exact=None)
- is_false(e, extra_constraints=(), exact=None)
- satisfiable(extra_constraints=(), exact=None)
- add(constraints, **kwargs)
- class claripy.solvers.Solver(backend=<claripy.backends.backend_z3.BackendZ3 object>, **kwargs)
Bases:
claripy.frontend_mixins.constraint_fixer_mixin.ConstraintFixerMixin
,claripy.frontend_mixins.concrete_handler_mixin.ConcreteHandlerMixin
,claripy.frontend_mixins.eager_resolution_mixin.EagerResolutionMixin
,claripy.frontend_mixins.constraint_filter_mixin.ConstraintFilterMixin
,claripy.frontend_mixins.constraint_deduplicator_mixin.ConstraintDeduplicatorMixin
,claripy.frontend_mixins.simplify_skipper_mixin.SimplifySkipperMixin
,claripy.frontend_mixins.sat_cache_mixin.SatCacheMixin
,claripy.frontend_mixins.model_cache_mixin.ModelCacheMixin
,claripy.frontend_mixins.constraint_expansion_mixin.ConstraintExpansionMixin
,claripy.frontend_mixins.simplify_helper_mixin.SimplifyHelperMixin
,claripy.frontends.full_frontend.FullFrontend
- class claripy.solvers.SolverCacheless(backend=<claripy.backends.backend_z3.BackendZ3 object>, **kwargs)
Bases:
claripy.frontend_mixins.constraint_fixer_mixin.ConstraintFixerMixin
,claripy.frontend_mixins.concrete_handler_mixin.ConcreteHandlerMixin
,claripy.frontend_mixins.eager_resolution_mixin.EagerResolutionMixin
,claripy.frontend_mixins.constraint_filter_mixin.ConstraintFilterMixin
,claripy.frontend_mixins.constraint_deduplicator_mixin.ConstraintDeduplicatorMixin
,claripy.frontend_mixins.simplify_skipper_mixin.SimplifySkipperMixin
,claripy.frontends.full_frontend.FullFrontend
- class claripy.solvers.SolverReplacement(actual_frontend=None, **kwargs)
Bases:
claripy.frontend_mixins.constraint_fixer_mixin.ConstraintFixerMixin
,claripy.frontend_mixins.concrete_handler_mixin.ConcreteHandlerMixin
,claripy.frontend_mixins.constraint_deduplicator_mixin.ConstraintDeduplicatorMixin
,claripy.frontends.replacement_frontend.ReplacementFrontend
- class claripy.solvers.SolverHybrid(exact_frontend=None, approximate_frontend=None, complex_auto_replace=True, replace_constraints=True, track=False, approximate_first=False, **kwargs)
Bases:
claripy.frontend_mixins.constraint_fixer_mixin.ConstraintFixerMixin
,claripy.frontend_mixins.concrete_handler_mixin.ConcreteHandlerMixin
,claripy.frontend_mixins.eager_resolution_mixin.EagerResolutionMixin
,claripy.frontend_mixins.constraint_filter_mixin.ConstraintFilterMixin
,claripy.frontend_mixins.constraint_deduplicator_mixin.ConstraintDeduplicatorMixin
,claripy.frontend_mixins.simplify_skipper_mixin.SimplifySkipperMixin
,claripy.frontends.hybrid_frontend.HybridFrontend
- class claripy.solvers.SolverVSA(**kwargs)
Bases:
claripy.frontend_mixins.constraint_fixer_mixin.ConstraintFixerMixin
,claripy.frontend_mixins.concrete_handler_mixin.ConcreteHandlerMixin
,claripy.frontend_mixins.constraint_filter_mixin.ConstraintFilterMixin
,claripy.frontends.light_frontend.LightFrontend
- class claripy.solvers.SolverConcrete(**kwargs)
Bases:
claripy.frontend_mixins.constraint_fixer_mixin.ConstraintFixerMixin
,claripy.frontend_mixins.concrete_handler_mixin.ConcreteHandlerMixin
,claripy.frontend_mixins.constraint_filter_mixin.ConstraintFilterMixin
,claripy.frontends.light_frontend.LightFrontend
- class claripy.solvers.SolverStrings(backend, *args, **kwargs)
Bases:
claripy.frontend_mixins.constraint_fixer_mixin.ConstraintFixerMixin
,claripy.frontend_mixins.concrete_handler_mixin.ConcreteHandlerMixin
,claripy.frontend_mixins.constraint_filter_mixin.ConstraintFilterMixin
,claripy.frontend_mixins.constraint_deduplicator_mixin.ConstraintDeduplicatorMixin
,claripy.frontend_mixins.eager_resolution_mixin.EagerResolutionMixin
,claripy.frontend_mixins.eval_string_to_ast_mixin.EvalStringsToASTsMixin
,claripy.frontend_mixins.smtlib_script_dumper_mixin.SMTLibScriptDumperMixin
,claripy.frontends.full_frontend.FullFrontend
- class claripy.solvers.SolverCompositeChild(backend=<claripy.backends.backend_z3.BackendZ3 object>, **kwargs)
Bases:
claripy.frontend_mixins.constraint_deduplicator_mixin.ConstraintDeduplicatorMixin
,claripy.frontend_mixins.sat_cache_mixin.SatCacheMixin
,claripy.frontend_mixins.simplify_skipper_mixin.SimplifySkipperMixin
,claripy.frontend_mixins.model_cache_mixin.ModelCacheMixin
,claripy.frontends.full_frontend.FullFrontend
- class claripy.solvers.SolverComposite(template_solver=None, track=False, template_solver_string=None, **kwargs)
Bases:
claripy.frontend_mixins.constraint_fixer_mixin.ConstraintFixerMixin
,claripy.frontend_mixins.concrete_handler_mixin.ConcreteHandlerMixin
,claripy.frontend_mixins.eager_resolution_mixin.EagerResolutionMixin
,claripy.frontend_mixins.constraint_filter_mixin.ConstraintFilterMixin
,claripy.frontend_mixins.constraint_deduplicator_mixin.ConstraintDeduplicatorMixin
,claripy.frontend_mixins.sat_cache_mixin.SatCacheMixin
,claripy.frontend_mixins.simplify_skipper_mixin.SimplifySkipperMixin
,claripy.frontend_mixins.simplify_helper_mixin.SimplifyHelperMixin
,claripy.frontend_mixins.constraint_expansion_mixin.ConstraintExpansionMixin
,claripy.frontend_mixins.composited_cache_mixin.CompositedCacheMixin
,claripy.frontends.composite_frontend.CompositeFrontend
Frontend Mixins
- class claripy.frontend_mixins.composited_cache_mixin.CompositedCacheMixin(*args, **kwargs)
Bases:
object
- downsize()
- class claripy.frontend_mixins.concrete_handler_mixin.ConcreteHandlerMixin
Bases:
object
- eval(e, n, **kwargs)
- batch_eval(exprs, n, **kwargs)
- max(e, **kwargs)
- min(e, **kwargs)
- solution(e, v, **kwargs)
- is_true(e, **kwargs)
- is_false(e, **kwargs)
- class claripy.frontend_mixins.constraint_deduplicator_mixin.ConstraintDeduplicatorMixin(*args, **kwargs)
Bases:
object
- simplify(**kwargs)
- add(constraints, **kwargs)
- class claripy.frontend_mixins.constraint_expansion_mixin.ConstraintExpansionMixin
Bases:
object
- eval(e, n, extra_constraints=(), exact=None, **kwargs)
- max(e, extra_constraints=(), exact=None, signed=False, **kwargs)
- min(e, extra_constraints=(), exact=None, signed=False, **kwargs)
- solution(e, v, extra_constraints=(), exact=None, **kwargs)
- class claripy.frontend_mixins.constraint_filter_mixin.ConstraintFilterMixin
Bases:
object
- add(constraints, **kwargs)
- satisfiable(extra_constraints=(), **kwargs)
- eval(e, n, extra_constraints=(), **kwargs)
- batch_eval(exprs, n, extra_constraints=(), **kwargs)
- max(e, extra_constraints=(), **kwargs)
- min(e, extra_constraints=(), **kwargs)
- solution(e, v, extra_constraints=(), **kwargs)
- is_true(e, extra_constraints=(), **kwargs)
- is_false(e, extra_constraints=(), **kwargs)
- class claripy.frontend_mixins.constraint_fixer_mixin.ConstraintFixerMixin
Bases:
object
- add(constraints, **kwargs)
- class claripy.frontend_mixins.debug_mixin.DebugMixin(*args, **kwargs)
Bases:
object
- claripy.frontend_mixins.debug_mixin.debug_decorator(o)
- class claripy.frontend_mixins.eager_resolution_mixin.EagerResolutionMixin
Bases:
object
- class claripy.frontend_mixins.model_cache_mixin.ModelCache(model)
Bases:
object
- filter(variables)
- static combine(*models)
- eval_ast(ast)
Eval the ast, replacing symbols by their last value in the model.
- eval_constraints(constraints)
Returns whether the constraints is satisfied trivially by using the last model.
- eval_list(asts)
- class claripy.frontend_mixins.model_cache_mixin.ModelCacheMixin(*args, **kwargs)
Bases:
object
- simplify(*args, **kwargs)
- add(constraints, invalidate_cache=True, **kwargs)
- split()
- combine(others)
- update(other)
Updates this cache mixin with results discovered by the other split off one.
- satisfiable(extra_constraints=(), **kwargs)
- batch_eval(asts, n, extra_constraints=(), **kwargs)
- eval(e, n, **kwargs)
- min(e, extra_constraints=(), signed=False, **kwargs)
- max(e, extra_constraints=(), signed=False, **kwargs)
- solution(e, v, extra_constraints=(), **kwargs)
- class claripy.frontend_mixins.sat_cache_mixin.SatCacheMixin(*args, **kwargs)
Bases:
object
- add(constraints, **kwargs)
- simplify()
- satisfiable(extra_constraints=(), **kwargs)
- eval(e, n, extra_constraints=(), **kwargs)
- batch_eval(e, n, extra_constraints=(), **kwargs)
- max(e, extra_constraints=(), **kwargs)
- min(e, extra_constraints=(), **kwargs)
- solution(e, v, extra_constraints=(), **kwargs)
- class claripy.frontend_mixins.simplify_helper_mixin.SimplifyHelperMixin
Bases:
object
- max(*args, **kwargs)
- min(*args, **kwargs)
- eval(e, n, *args, **kwargs)
- batch_eval(e, n, *args, **kwargs)
- class claripy.frontend_mixins.simplify_skipper_mixin.SimplifySkipperMixin(*args, **kwargs)
Bases:
object
- add(*args, **kwargs)
- simplify(*args, **kwargs)
- class claripy.frontend_mixins.solve_block_mixin.SolveBlockMixin(*args, **kwargs)
Bases:
object
- eval(*args, **kwargs)
- batch_eval(*args, **kwargs)
- min(*args, **kwargs)
- max(*args, **kwargs)
- satisfiable(*args, **kwargs)
- solution(*args, **kwargs)
Annotations
- class claripy.annotation.Annotation
Bases:
object
Annotations are used to achieve claripy’s goal of being an arithmetic instrumentation engine. They provide a means to pass extra information to the claripy backends.
- property eliminatable
Returns whether this annotation can be eliminated in a simplification.
- Returns
True if eliminatable, False otherwise
- property relocatable
Returns whether this annotation can be relocated in a simplification.
- Returns
True if it can be relocated, false otherwise.
- relocate(src, dst)
This is called when an annotation has to be relocated because of simplifications.
Consider the following case:
x = claripy.BVS(‘x’, 32) zero = claripy.BVV(0, 32).add_annotation(your_annotation) y = x + zero
Here, one of three things can happen:
if your_annotation.eliminatable is True, the simplifiers will simply eliminate your_annotation along with zero and y is x will hold
elif your_annotation.relocatable is False, the simplifier will abort and y will never be simplified
elif your_annotation.relocatable is True, the simplifier will run, determine that the simplified result of x + zero will be x. It will then call your_annotation.relocate(zero, x) to move the annotation away from the AST that is about to be eliminated.
- Parameters
src – the old AST that was eliminated in the simplification
dst – the new AST (the result of a simplification)
- Returns
the annotation that will be applied to dst
- class claripy.annotation.SimplificationAvoidanceAnnotation
Bases:
claripy.annotation.Annotation
- property eliminatable
- property relocatable
VSA
- class claripy.vsa.abstract_location.Segment(offset, size=0)
Bases:
object
- class claripy.vsa.abstract_location.AbstractLocation(bbl_key, stmt_id, region_id, segment_list=None, region_offset=None, size=None)
Bases:
claripy.backend_object.BackendObject
- property basicblock_key
- property statement_id
- property region
- property segments
- update(region_offset, size)
- copy()
- merge(other)
- class claripy.vsa.bool_result.BoolResult(op=None, args=None)
Bases:
claripy.backend_object.BackendObject
- value()
- identical(other)
- union(other)
- size()
- static is_maybe(o)
- static has_true(o)
- static has_false(o)
- static is_true(o)
- static is_false(o)
- class claripy.vsa.bool_result.TrueResult(op=None, args=None)
Bases:
claripy.vsa.bool_result.BoolResult
- cardinality = 1
- property value
- identical(other)
- union(other)
- class claripy.vsa.bool_result.FalseResult(op=None, args=None)
Bases:
claripy.vsa.bool_result.BoolResult
- cardinality = 1
- property value
- identical(other)
- union(other)
- class claripy.vsa.bool_result.MaybeResult(op=None, args=None)
Bases:
claripy.vsa.bool_result.BoolResult
- cardinality = 2
- property value
- identical(other)
- union(other)
- claripy.vsa.discrete_strided_interval_set.apply_on_each_si(f)
- claripy.vsa.discrete_strided_interval_set.convert_operand_to_si(f)
- claripy.vsa.discrete_strided_interval_set.collapse_operand(f)
- class claripy.vsa.discrete_strided_interval_set.DiscreteStridedIntervalSet(name=None, bits=0, si_set=None, max_cardinality=None)
Bases:
claripy.vsa.strided_interval.StridedInterval
A DiscreteStridedIntervalSet represents one or more discrete StridedInterval instances.
- property cardinality
This is an over-approximation of the cardinality of this DSIS.
- Returns
- property number_of_values
- property stride
- should_collapse()
- collapse()
Collapse into a StridedInterval instance.
- Returns
A new StridedInterval instance.
- normalize()
Return the collapsed object if
should_collapse()
is True, otherwise return self.- Returns
A DiscreteStridedIntervalSet object.
- copy()
- concat(b)
Operation concat
- Parameters
b – The other operand to concatenate with.
- Returns
The concatenated value.
- extract(high_bit, low_bit)
Operation extract
- Parameters
high_bit – The highest bit to begin extraction.
low_bit – The lowest bit to end extraction.
- Returns
Extracted bits.
- eval(n, signed=False)
- Parameters
n –
signed –
- Returns
- union(b)
- intersection(b)
- reverse()
Operation Reverse
- Returns
None
- sign_extend(new_length)
Operation SignExt
- Parameters
new_length – The length to extend to.
- Returns
SignExtended value.
- zero_extend(new_length)
Operation ZeroExt
- Parameters
new_length – The length to extend to.
- Returns
ZeroExtended value.
- widen(b)
Widening operator.
- Parameters
b – The other operand.
- Returns
The widened result.
- exception claripy.vsa.errors.ClaripyVSAError
Bases:
claripy.errors.ClaripyError
- exception claripy.vsa.errors.ClaripyVSAOperationError
- claripy.vsa.strided_interval.reversed_processor(f)
- claripy.vsa.strided_interval.normalize_types(f)
- class claripy.vsa.strided_interval.WarrenMethods
Bases:
object
Methods as suggested in book. Hackers Delight.
- static min_or(a, b, c, d, w)
Lower bound of result of ORing 2-intervals.
- Parameters
a – Lower bound of first interval
b – Upper bound of first interval
c – Lower bound of second interval
d – Upper bound of second interval
w – bit width
- Returns
Lower bound of ORing 2-intervals
- static max_or(a, b, c, d, w)
Upper bound of result of ORing 2-intervals.
- Parameters
a – Lower bound of first interval
b – Upper bound of first interval
c – Lower bound of second interval
d – Upper bound of second interval
w – bit width
- Returns
Upper bound of ORing 2-intervals
- static min_and(a, b, c, d, w)
Lower bound of result of ANDing 2-intervals.
- Parameters
a – Lower bound of first interval
b – Upper bound of first interval
c – Lower bound of second interval
d – Upper bound of second interval
w – bit width
- Returns
Lower bound of ANDing 2-intervals
- static max_and(a, b, c, d, w)
Upper bound of result of ANDing 2-intervals.
- Parameters
a – Lower bound of first interval
b – Upper bound of first interval
c – Lower bound of second interval
d – Upper bound of second interval
w – bit width
- Returns
Upper bound of ANDing 2-intervals
- static min_xor(a, b, c, d, w)
Lower bound of result of XORing 2-intervals.
- Parameters
a – Lower bound of first interval
b – Upper bound of first interval
c – Lower bound of second interval
d – Upper bound of second interval
w – bit width
- Returns
Lower bound of XORing 2-intervals
- static max_xor(a, b, c, d, w)
Upper bound of result of XORing 2-intervals.
- Parameters
a – Lower bound of first interval
b – Upper bound of first interval
c – Lower bound of second interval
d – Upper bound of second interval
w – bit width
- Returns
Upper bound of XORing 2-intervals
- class claripy.vsa.strided_interval.StridedInterval(name=None, bits=0, stride=None, lower_bound=None, upper_bound=None, uninitialized=False, bottom=False)
Bases:
claripy.backend_object.BackendObject
A Strided Interval is represented in the following form:
<bits> stride[lower_bound, upper_bound]
For more details, please refer to relevant papers like TIE and WYSINWYE.
This implementation is signedness-agostic, please refer to [1] Signedness-Agnostic Program Analysis: Precise Integer Bounds for Low-Level Code by Jorge A. Navas, etc. for more details. Note that this implementation only takes hint from [1]. Such a work has been improved to be more precise (and still sound) when dealing with strided intervals. DO NOT expect to see a 1-to-1 reproduction of [1].
Thanks all corresponding authors for their outstanding works.
- copy()
- nameless_copy()
- normalize()
- eval(n, signed=False)
Evaluate this StridedInterval to obtain a list of concrete integers.
- Parameters
n – Upper bound for the number of concrete integers
signed – Treat this StridedInterval as signed or unsigned
- Returns
A list of at most n concrete integers
- solution(b)
Checks whether an integer is solution of the current strided Interval :param b: integer to check :return: True if b belongs to the current Strided Interval, False otherwhise
- identical(o)
Used to make exact comparisons between two StridedIntervals. Usually it is only used in test cases.
- Parameters
o – The other StridedInterval to compare with.
- Returns
True if they are exactly same, False otherwise.
- SLT(o)
Signed less than
- Parameters
o – The other operand
- Returns
TrueResult(), FalseResult(), or MaybeResult()
- SLE(o)
Signed less than or equal to.
- Parameters
o – The other operand.
- Returns
TrueResult(), FalseResult(), or MaybeResult()
- SGT(o)
Signed greater than.
- Parameters
o – The other operand
- Returns
TrueResult(), FalseResult(), or MaybeResult()
- SGE(o)
Signed greater than or equal to.
- Parameters
o – The other operand
- Returns
TrueResult(), FalseResult(), or MaybeResult()
- ULT(o)
Unsigned less than.
- Parameters
o – The other operand
- Returns
TrueResult(), FalseResult(), or MaybeResult()
- ULE(o)
Unsigned less than or equal to.
- Parameters
o – The other operand
- Returns
TrueResult(), FalseResult(), or MaybeResult()
- UGT(o)
Signed greater than.
- Parameters
o – The other operand
- Returns
TrueResult(), FalseResult(), or MaybeResult()
- UGE(o)
Unsigned greater than or equal to.
- Parameters
o – The other operand
- Returns
TrueResult(), FalseResult(), or MaybeResult()
- eq(o)
Equal
- Parameters
o – The ohter operand
- Returns
TrueResult(), FalseResult(), or MaybeResult()
- LShR(shift_amount)
Logical shift right. :param StridedInterval shift_amount: The amount of shifting :return: The shifted StridedInterval object :rtype: StridedInterval
- property name
- property reversed
- property size
- property cardinality
- property complement
Return the complement of the interval Refer section 3.1 augmented for managing strides
- Returns
- property lower_bound
- property upper_bound
- property bits
- property stride
- property max
- property min
- property unique
- property is_empty
The same as is_bottom :return: True/False
- property is_top
If this is a TOP value.
- Returns
True if this is a TOP
- property is_bottom
Whether this StridedInterval is a BOTTOM, in other words, describes an empty set of integers.
- Returns
True/False
- property is_integer
If this is an integer, i.e. self.lower_bound == self.upper_bound.
- Returns
True if this is an integer, False otherwise
- property is_interval
- property n_values
- static lcm(a, b)
Get the least common multiple.
- Parameters
a – The first operand (integer)
b – The second operand (integer)
- Returns
Their LCM
- static gcd(a, b)
Get the greatest common divisor.
- Parameters
a – The first operand (integer)
b – The second operand (integer)
- Returns
Their GCD
- static highbit(k)
- static min_bits(val, max_bits=None)
- static max_int(k)
- static min_int(k)
- static signed_max_int(k)
- static signed_min_int(k)
- static upper(bits, i, stride)
- Returns
- static lower(bits, i, stride)
- Returns
- static top(bits, name=None, uninitialized=False)
Get a TOP StridedInterval.
- Returns
- static empty(bits)
- neg(*args, **kwargs)
- add(b)
Binary operation: add
- Parameters
b – The other operand
- Returns
self + b
- sub(b)
Binary operation: sub
- Parameters
b – The other operand
- Returns
self - b
- mul(o)
Binary operation: multiplication
- Parameters
o – The other operand
- Returns
self * o
- sdiv(o)
Binary operation: signed division
- Parameters
o – The divisor
- Returns
(self / o) in signed arithmetic
- udiv(o)
Binary operation: unsigned division
- Parameters
o – The divisor
- Returns
(self / o) in unsigned arithmetic
- bitwise_not(*args, **kwargs)
- bitwise_or(t)
Binary operation: logical or
- Parameters
b – The other operand
- Returns
self | b
- bitwise_and(t)
Binary operation: logical and
- Parameters
b – The other operand
- Returns
- bitwise_xor(t)
Operation xor
- Parameters
t – The other operand.
- rshift_logical(*args, **kwargs)
- rshift_arithmetic(*args, **kwargs)
- lshift(*args, **kwargs)
- cast_low(*args, **kwargs)
- concat(b)
- extract(*args, **kwargs)
- agnostic_extend(*args, **kwargs)
- zero_extend(*args, **kwargs)
- sign_extend(*args, **kwargs)
- union(b)
The union operation. It might return a DiscreteStridedIntervalSet to allow for better precision in analysis.
- Parameters
b – Operand
- Returns
A new DiscreteStridedIntervalSet, or a new StridedInterval.
- static least_upper_bound(*intervals_to_join)
Pseudo least upper bound. Join the given set of intervals into a big interval. The resulting strided interval is the one which in all the possible joins of the presented SI, presented the least number of values.
The number of joins to compute is linear with the number of intervals to join.
Draft of proof: Considering three generic SI (a,b, and c) ordered from their lower bounds, such that a.lower_bund <= b.lower_bound <= c.lower_bound, where <= is the lexicographic less or equal. The only joins which have sense to compute are: * a U b U c * b U c U a * c U a U b
All the other combinations fall in either one of these cases. For example: b U a U c does not make make sense to be calculated. In fact, if one draws this union, the result is exactly either (b U c U a) or (a U b U c) or (c U a U b). :param intervals_to_join: Intervals to join :return: Interval that contains all intervals
- static pseudo_join(s, b, smart_join=True)
It two intervals in a way that the resulting SI is the one that has the least SI cardinality (i.e., which represents the least number of elements) possible if the smart_join flag is enabled, otherwise it just joins the SI according the order they are passed to the function.
The pseudo-join operation is not associative in wrapping intervals (please refer to section 3.1 paper ‘Signedness-Agnostic Program Analysis: Precise Integer Bounds for Low-Level Code’), Therefore the join of three WI may give us different results according on the order we join them. All of the results will be sound, though.
Please use the function least_upper_bound as a stub.
- Parameters
s – The first SI
b – The other SI.
smart_join – Enable the smart join behavior. If this flag is set, this function joins the two SI in a way that the resulting Si has least number of elements (more precise). If it is unset, this function will join the two SI according on the order they are passed to the function.
- Returns
A new StridedInterval
- static extended_euclid(a, b)
It calculates the GCD of a and b, and two values x and y such that: a*x + b*y = GCD(a,b). This code has been taken from the project sympy.
- Parameters
a – first integer
b – second integer
- Returns
x,y and the GCD of a and b
- static sign(a)
- static igcd(a, b)
- Parameters
a – First integer
b – Second integer
- Returns
the integer GCD between a and b
- static diop_natural_solution_linear(c, a, b)
It finds the fist natural solution of the diophantine equation a*x + b*y = c. Some lines of this code are taken from the project sympy.
- Parameters
c – constant
a – quotient of x
b – quotient of y
- Returns
the first natural solution of the diophatine equation
- intersection(b)
- widen(b)
- reverse()
This is a delayed reversing function. All it really does is to invert the _reversed property of this StridedInterval object.
- Returns
None
- claripy.vsa.strided_interval.CreateStridedInterval(name=None, bits=0, stride=None, lower_bound=None, upper_bound=None, uninitialized=False, to_conv=None, discrete_set=False, discrete_set_max_cardinality=None)
- Parameters
name –
bits –
stride –
lower_bound –
upper_bound –
to_conv –
discrete_set (bool) –
discrete_set_max_cardinality (int) –
- Returns
- claripy.vsa.valueset.normalize_types_two_args(f)
- claripy.vsa.valueset.normalize_types_one_arg(f)
- class claripy.vsa.valueset.RegionAnnotation(region_id, region_base_addr, offset)
Bases:
claripy.annotation.Annotation
Use RegionAnnotation to annotate ASTs. Normally, an AST annotated by RegionAnnotations is treated as a ValueSet.
Note that Annotation objects are immutable. Do not change properties of an Annotation object without creating a new one.
- property eliminatable
A Region annotation is not eliminatable in simplifications.
- Returns
False
- Return type
bool
- property relocatable
A Region annotation is not relocatable in simplifications.
- Returns
False
- Return type
bool
- relocate(src, dst)
Override Annotation.relocate().
- Parameters
src – The old AST
dst – The new AST, as the result of a simplification
- Returns
The new annotation that should be applied on the new AST
- class claripy.vsa.valueset.ValueSet(name=None, region=None, region_base_addr=None, bits=None, val=None)
Bases:
claripy.backend_object.BackendObject
ValueSet is a mapping between memory regions and corresponding offsets.
Constructor.
- Parameters
name (str) – Name of this ValueSet object. Only for debugging purposes.
region (str) – Region ID.
region_base_addr (int) – Base address of the region.
bits (int) – Size of the ValueSet.
val – an initial offset
- property name
- property bits
- property regions
- property reversed
- property unique
- property cardinality
- property is_empty
- property valueset
- static empty(bits)
- items()
- size()
- get_si(region)
- stridedinterval()
- apply_annotation(annotation)
Apply a new annotation onto self, and return a new ValueSet object.
- Parameters
annotation (RegionAnnotation) – The annotation to apply.
- Returns
A new ValueSet object
- Return type
- SLT(other)
- SGT(other)
- SLE(other)
- SGE(other)
- eval(n, signed=False)
- property min
The minimum integer value of a value-set. It is only defined when there is exactly one region.
- Returns
A integer that represents the minimum integer value of this value-set.
- Return type
int
- property max
The maximum integer value of a value-set. It is only defined when there is exactly one region.
- Returns
A integer that represents the maximum integer value of this value-set.
- Return type
int
- reverse()
- extract(high_bit, low_bit)
Operation extract
- A cheap hack is implemented: a copy of self is returned if (high_bit - low_bit + 1 == self.bits), which is a
ValueSet instance. Otherwise a StridedInterval is returned.
- Parameters
high_bit –
low_bit –
- Returns
A ValueSet or a StridedInterval
- concat(b)
- union(b)
- widen(b)
- intersection(b)
- identical(o)
Used to make exact comparisons between two ValueSets.
- Parameters
o – The other ValueSet to compare with.
- Returns
True if they are exactly same, False otherwise.
Misc. Things
- claripy.BV(name, size, explicit_name=None)
- claripy.downsize()
Clear all temporary data associated with any backend
- claripy.reset()
Attempt to refresh any caching state associated with the module
- class claripy.balancer.Balancer(helper, c, validation_frontend=None)
Bases:
object
The Balancer is an equation redistributor. The idea is to take an AST and rebalance it to, for example, isolate unknown terms on one side of an inequality.
- property compat_ret
- property replacements
- comparison_info = {'SGE': (False, True, False), 'SGT': (False, False, False), 'SLE': (True, True, False), 'SLT': (True, False, False), 'UGE': (False, True, True), 'UGT': (False, False, True), 'ULE': (True, True, True), 'ULT': (True, False, True), '__ge__': (False, True, True), '__gt__': (False, False, True), '__le__': (True, True, True), '__lt__': (True, False, True)}
- claripy.balancer.is_true(a)
- claripy.balancer.is_false(a)
- claripy.bv.compare_bits(f)
- claripy.bv.compare_bits_0_length(f)
- claripy.bv.normalize_types(f)
- class claripy.bv.BVV(value, bits)
Bases:
claripy.backend_object.BackendObject
- bits
- mod
- property value
- property signed
- size()
- claripy.bv.BitVecVal(value, bits)
- claripy.bv.ZeroExt(num, o)
- claripy.bv.SignExt(num, o)
- claripy.bv.Extract(f, t, o)
- claripy.bv.Concat(*args)
- claripy.bv.RotateRight(self, bits)
- claripy.bv.RotateLeft(self, bits)
- claripy.bv.Reverse(a)
- claripy.bv.ULT(self, o)
- claripy.bv.UGT(self, o)
- claripy.bv.ULE(self, o)
- claripy.bv.UGE(self, o)
- claripy.bv.SLT(self, o)
- claripy.bv.SGT(self, o)
- claripy.bv.SLE(self, o)
- claripy.bv.SGE(self, o)
- claripy.bv.SMod(self, o)
- claripy.bv.SDiv(self, o)
- claripy.bv.BoolV(b)
- claripy.bv.And(*args)
- claripy.bv.Or(*args)
- claripy.bv.Not(b)
- claripy.bv.normalizer(*args)
- claripy.bv.If(c, t, f)
- claripy.bv.LShR(a, b)
- exception claripy.errors.ClaripyError
Bases:
Exception
- exception claripy.errors.UnsatError
Bases:
claripy.errors.ClaripyError
- exception claripy.errors.ClaripyFrontendError
Bases:
claripy.errors.ClaripyError
- exception claripy.errors.ClaripySerializationError
Bases:
claripy.errors.ClaripyError
- exception claripy.errors.BackendError
Bases:
claripy.errors.ClaripyError
- exception claripy.errors.BackendUnsupportedError
Bases:
claripy.errors.BackendError
- exception claripy.errors.ClaripyZ3Error
Bases:
claripy.errors.ClaripyError
- exception claripy.errors.ClaripyBackendVSAError
Bases:
claripy.errors.BackendError
- exception claripy.errors.MissingSolverError
Bases:
claripy.errors.ClaripyError
- exception claripy.errors.ClaripyASTError
Bases:
claripy.errors.ClaripyError
- exception claripy.errors.ClaripyBalancerError
- exception claripy.errors.ClaripyBalancerUnsatError
- exception claripy.errors.ClaripyTypeError
- exception claripy.errors.ClaripyValueError
- exception claripy.errors.ClaripySizeError
- exception claripy.errors.ClaripyOperationError
- exception claripy.errors.ClaripyReplacementError
- exception claripy.errors.ClaripyRecursionError
- exception claripy.errors.ClaripyZeroDivisionError
Bases:
claripy.errors.ClaripyOperationError
,ZeroDivisionError
- claripy.fp.compare_sorts(f)
- claripy.fp.normalize_types(f)
- class claripy.fp.RM(value)
Bases:
enum.Enum
An enumeration.
- RM_NearestTiesEven = 'RM_RNE'
- RM_NearestTiesAwayFromZero = 'RM_RNA'
- RM_TowardsZero = 'RM_RTZ'
- RM_TowardsPositiveInf = 'RM_RTP'
- RM_TowardsNegativeInf = 'RM_RTN'
- static default()
- pydecimal_equivalent_rounding_mode()
- class claripy.fp.FSort(name, exp, mantissa)
Bases:
object
- property length
- static from_size(n)
- static from_params(exp, mantissa)
- class claripy.fp.FPV(value, sort)
Bases:
claripy.backend_object.BackendObject
- value
- sort
- claripy.fp.fpToFP(a1, a2, a3=None)
Returns a FP AST and has three signatures:
- fpToFP(ubvv, sort)
Returns a FP AST whose value is the same as the unsigned BVV a1 and whose sort is a2.
- fpToFP(rm, fpv, sort)
Returns a FP AST whose value is the same as the floating point a2 and whose sort is a3.
- fpToTP(rm, sbvv, sort)
Returns a FP AST whose value is the same as the signed BVV a2 and whose sort is a3.
- claripy.fp.fpToFPUnsigned(_rm, thing, sort)
Returns a FP AST whose value is the same as the unsigned BVV thing and whose sort is sort.
- claripy.fp.fpToIEEEBV(fpv)
Interprets the bit-pattern of the IEEE754 floating point number fpv as a bitvector.
- Returns
A BV AST whose bit-pattern is the same as fpv
- claripy.fp.fpFP(sgn, exp, mantissa)
Concatenates the bitvectors sgn, exp and mantissa and returns the corresponding IEEE754 floating point number.
- Returns
A FP AST whose bit-pattern is the same as the concatenated bitvector
- claripy.fp.fpToSBV(rm, fp, size)
- claripy.fp.fpToUBV(rm, fp, size)
- claripy.fp.fpEQ(a, b)
Checks if floating point a is equal to floating point b.
- claripy.fp.fpNE(a, b)
Checks if floating point a is not equal to floating point b.
- claripy.fp.fpGT(a, b)
Checks if floating point a is greater than floating point b.
- claripy.fp.fpGEQ(a, b)
Checks if floating point a is greater than or equal to floating point b.
- claripy.fp.fpLT(a, b)
Checks if floating point a is less than floating point b.
- claripy.fp.fpLEQ(a, b)
Checks if floating point a is less than or equal to floating point b.
- claripy.fp.fpAbs(x)
Returns the absolute value of the floating point x. So:
a = FPV(-3.2, FSORT_DOUBLE) b = fpAbs(a) b is FPV(3.2, FSORT_DOUBLE)
- claripy.fp.fpNeg(x)
Returns the additive inverse of the floating point x. So:
a = FPV(3.2, FSORT_DOUBLE) b = fpAbs(a) b is FPV(-3.2, FSORT_DOUBLE)
- claripy.fp.fpSub(_rm, a, b)
Returns the subtraction of the floating point a by the floating point b.
- claripy.fp.fpAdd(_rm, a, b)
Returns the addition of two floating point numbers, a and b.
- claripy.fp.fpMul(_rm, a, b)
Returns the multiplication of two floating point numbers, a and b.
- claripy.fp.fpDiv(_rm, a, b)
Returns the division of the floating point a by the floating point b.
- claripy.fp.fpIsNaN(x)
Checks whether the argument is a floating point NaN.
- claripy.fp.fpIsInf(x)
Checks whether the argument is a floating point infinity.
- claripy.operations.op(name, arg_types, return_type, extra_check=None, calc_length=None, do_coerce=True, bound=True)
- claripy.operations.reversed_op(op_func)
- claripy.operations.preprocess_union(*args, **kwargs)
- claripy.operations.length_same_check(*args)
- claripy.operations.basic_length_calc(*args)
- claripy.operations.extract_check(high, low, bv)
- claripy.operations.extend_check(amount, value)
- claripy.operations.concat_length_calc(*args)
- claripy.operations.extract_length_calc(high, low, _)
- claripy.operations.str_basic_length_calc(str_1)
- claripy.operations.int_to_str_length_calc(int_val)
- claripy.operations.str_replace_check(*args)
- claripy.operations.substr_length_calc(start_idx, count, strval)
- claripy.operations.ext_length_calc(ext, orig)
- claripy.operations.str_concat_length_calc(*args)
- claripy.operations.str_replace_length_calc(*args)
- claripy.operations.strlen_bv_size_calc(s, bitlength)
- claripy.operations.strindexof_bv_size_calc(s1, s2, start_idx, bitlength)
- claripy.operations.strtoint_bv_size_calc(s, bitlength)
- class claripy.simplifications.SimplificationManager
Bases:
object
- simplify(op, args)
- static if_simplifier(cond, if_true, if_false)
- static concat_simplifier(*args)
- static rshift_simplifier(val, shift)
- static lshr_simplifier(val, shift)
- static lshift_simplifier(val, shift)
- static eq_simplifier(a, b)
- static ne_simplifier(a, b)
- static bv_reverse_simplifier(body)
- static boolean_and_simplifier(*args)
- static boolean_or_simplifier(*args)
- static bitwise_add_simplifier(*args)
- static bitwise_mul_simplifier(*args)
- static bitwise_sub_simplifier(a, b)
- static bitwise_xor_simplifier_minmax(a, b)
- static bitwise_xor_simplifier(a, b, *args)
- static bitwise_or_simplifier(a, b, *args)
- static bitwise_and_simplifier(a, b, *args)
- static boolean_not_simplifier(body)
- static zeroext_simplifier(n, e)
- static signext_simplifier(n, e)
- static extract_simplifier(high, low, val)
- static fptobv_simplifier(the_fp)
- static fptofp_simplifier(*args)
- static rotate_shift_mask_simplifier(a, b)
- Handles the following case:
- ((A << a) | (A >> (_N - a))) & mask, where
A being a BVS, a being a integer that is less than _N, _N is either 32 or 64, and mask can be evaluated to 0xffffffff (64-bit) or 0xffff (32-bit) after reversing the rotate-shift operation.
- It will be simplified to:
(A & (mask >>> a)) <<< a
- static str_reverse_simplifier(arg)
- static and_mask_comparing_against_constant_simplifier(op, a, b)
This simplifier handles the following case:
A & mask == b, and A & mask != b
If the high bits of A are 0, & mask can be eliminated.
- static zeroext_extract_comparing_against_constant_simplifier(op, a, b)
This simplifier handles the following cases:
Extract(hi, 0, Concat(0, A)) op b, and Extract(hi, 0, ZeroExt(n, A)) op b
Extract can be eliminated if the high bits of Concat(0, A) or ZeroExt(n, A) are all zeros.
- static zeroext_comparing_against_simplifier(op, a, b)
This simplifier handles the following cases:
ZeroExt(n, A) == b, and ZeroExt(n, A) != b
If the high bits of b are all zeros (in case of __eq__) or have at least one ones (in case of __ne__), ZeroExt can be eliminated.
- claripy.ops.AbstractLocation(*args, **kwargs)
- claripy.smtlib_utils.make_pysmt_const_from_type(val, type)
- class claripy.smtlib_utils.SMTParser(tokens)
Bases:
object
- expect(*allowed)
- expect_assignment_tuple()
- consume_assignment_list()
- class claripy.strings.StringV(value)
- claripy.strings.StrConcat(*args)
Concatenate a sequence of strings.
- Parameters
args – list of string that has to be concatenated
- Returns
the concatenated string
- claripy.strings.StrSubstr(start_idx, count, initial_string)
Return the substring of length count starting at start_idx.
- Parameters
start_idx – starting index of the substring
count – length of the substring in bytes
initial_string – original string
- Returns
the substring
- claripy.strings.StrReplace(initial_string, pattern_to_be_replaced, replacement_pattern)
Return string where the first occurrence of pattern_to_be_replaced is replaced with replacement_pattern.
- Parameters
initial_string – string in which the pattern needs to be replaced
pattern_to_be_replaced – substring that has to be replaced inside initial_string
replacement_pattern – pattern that has to be inserted in initial_string to replace pattern_to_be_replaced
- Returns
string with replacement
- claripy.strings.StrLen(input_string, bitlength)
Return length of the input_string in bytes.
- Parameters
input_string – the string we want to calculate the length
bitlength – length of the bitvector representing the length of the string
- Returns
bitvector holding the size of the string in bytes
- claripy.strings.StrContains(input_string, substring)
Check if substring is contained in input_string.
- Parameters
input_string – the string we want to check
substring – the string we want to check if it’s contained inside the input_string
- Returns
True if substring is contained in input_string else False
- claripy.strings.StrPrefixOf(prefix, input_string)
Check if input_string starts with prefix.
- Parameters
prefix – prefix we want to check
input_string – the string we want to check
- Returns
True if the input_string starts with prefix else False
- claripy.strings.StrSuffixOf(suffix, input_string)
Check if input_string ends with suffix.
- Parameters
suffix – suffix we want to check
input_string – the string we want to check
:return : True if the input_string ends with suffix else False
- claripy.strings.StrIndexOf(input_string, substring, startIndex, bitlength)
Return the index of the first occurrence of substring at or after the startIndex, or -1 if it is not found.
- Parameters
input_string – the string we want to check
substring – the substring we want to find the index
startIndex – the index to start searching at
bitlength – length of the bitvector representing the index of the substring
- Return BV
index of the substring or -1 in bitvector
- claripy.strings.StrToInt(input_string, bitlength)
Return the integer representation of input_string.
- Parameters
input_string – the string we want to transform in an integer
bitlength – length of the bitvector representing the index of the substring
- Return BV
bitvector of the integer resulting from the string or -1 in bitvector if the string cannot be transformed into an integer
- claripy.strings.StrIsDigit(input_string)
Determine whether input_string is entirely numeric.
- Parameters
input_string – the string we want to check
- Returns
True if the string is entirely numeric otherwise False
- claripy.strings.IntToStr(input_bvv)
Return the string representation of input_bvv.
- Parameters
input_bvv – the integer to be expressed as a string
- Returns
the string representation of the integer
- claripy.debug.set_debug(enabled)
Enable or disable the debug mode. In debug mode, a bunch of extra checks in claripy will be executed. You’ll want to disable debug mode if you are running performance critical code.